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String Model in Differential Forms 

S. N. Solodukhin ~'2 

Received April 10, 1991 

The string model is formulated in terms of two-dimensional differential forms of 
arbitrary rank. The local supersymmetric string action with local conformal and 
Lorentz symmetries is constructed. The connection with topological quantum 
field theory is discussed. Covariant quantization of the model is investigated. The 
critical space-time dimension is found to be d=4. 

1. INTRODUCTION 

Recent hope of unifying the fundamental interactions is connected with 
string theory. In the low-energy limit this theory gives a good description of 
gravity and the gauge fields. The cancellation condition of gauge anomalies 
determines the gauge group to be either SO(32) or E8 | E8 (Green et al., 
1987). On the other hand, one determines the dimension of the space-time 
in which the string is embedded from a condition of cancellation of the 
conformal anomalies (Polyakov, 1981). For known models this dimension 
is equal to d=  10 or d=  26. Hence, compactification of the additional dimen- 
sions is necessary. But the mechanism of such a compactification is too 
arbitrary (Green et al., 1987) for the theory to be fundamental. Thus, the 
problem of constructing a string model directly in four-dimensional space- 
time has been attracting growing attention (Ellis, 1987; Kawai et al., 1987; 
Antoniadis and Bachas, 1988). 

The standard string models are formulated in terms of two-dimensional 
scalar and spinor fields (Polyakov, 1981). We develop here the string model 
on the basis of our program (Solodukhin, 1988, 1989) of using only two- 
dimensional differential forms of arbitrary rank. It is known that antisym- 
metric tensor fields (or differential forms) play an important role in various 
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aspects of string theory (Rohm and Witten, 1986; Dominique, 1986; Teitel- 
boim, 1986; Rabin, 1986). On the other hand, the connection of external 
forms with topology makes such a consideration especially attractive. We 
exploit extensively the possibility of describing fermions by differential forms 
using an equation first suggested by Ivanenko and Landau (1928) and widely 
discussed in the literature (KAhler, 1962; Graf, 1978; Becher and Joos, 1983 ; 
Benn and Tucker, 1983; Ivanenko and Obukhov, 1985; Ivanenko et  al., 
1985; Bullinaria, 1986). 

2. BOSONIC SECTOR OF THE M O D E L  

In standard string models (Green et  al., 1987; Polyakov, 1981; Brink 
et  al., 1976; Deser and Zumino, 1976) the string is described by the action 

f d2z x ~  g 'uv OuX i (3vX i (1) S = ~  
1 

where guy is the metric on the world-sheet of a moving string, and scalar 
functions Xi(z), i= 1 . . . . .  d, realize the embedding of this world-sheet into 
the d-dimensional space-time. 

It is easy to see that the action (1) might be transformed into 

f S = I * d X i  A d X  i (1') 

A natural generalization of this expression is to substitute zero-forms X ~ by 
the full inhomogeneous exterior forms on the world-sheet: 

~ i : q)i ~- (pilz dzll -~ { q)iu v dzl* A d z  v 

Thus, one can suggest the following generalization of (1'): 

f s - -~  �9 ( d - 6 ) ~ i A ( d - ~ ) ~  i (2) 

where d and ~ are external differential and codifferential operators, respec- 
tively (Dubrovin et aI., 1979). 

In the string theory conformal symmetry plays a special role (Green 
et al., 1987). It is easy to see that (2) is not conformal invariant in general. 
However, it is invariant under global transformations: 

guv --* ee~ g~, v, q)u -~ e~ cP, 
(3) 

q) ~ q), q)Uv -* e2C~q)uv 
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Localizing these, we find that under conformat transformation 

( d - 8 ) ~ b - - , [ ( d - 6 ) O  Jglob+e-~162 A dz  ~ (4) 

where [(d-3)~]glob is an expression which remains in (4) if a = const. 
In order to compensate additional terms in (4), let us consider the 

extended operator D, which acts on the space of the one-forms q~l (hereafter 
~bl denotes an odd form and ~bz an even form): 

/3~b~ = ( d -  3 )q91 + 05 V ~ l  (5) 

where o5 = * �89 is the dual Lorentz connection one-form. If  h~, is a two- 
-ha(Ovh u - Ouhg). Let us note that dimensional orthonormal basis, then 05~- v a 

05, like the Lorentz connection form co a , corresponding to the localizing of 
the two-dimensional Lorentz group, plays an important role in the structure 
of the conformal and Lorentz anomalies in two dimensions (Obukhov and 
Solodukhin, 1990). 

For o5 we have the following transformation law under the local trans- 
formations (3): 0 5 , ~ 0 5 ~ - ~ a .  It is interesting to note the following 
expression for scalar curvature (Obukhov and Solodukhin, 1990): 

R = 2V~ 05~ (6) 

Thus, we come to the action 

(, 

, 5=  * ~ ( d - a ) ~ b 2 v ( d - a ) ~ b 2 + ~  ,/)q~,A/)~b, (7) 

which is the conformal-invariant generalization of the standard string action 
(Green et al., 1987). 

The codifferential operator 8 is conjugated to the operator d under the 
natural scalar product: 

(q~, ~,) = j ' ,  ~^  ~, 

The operator b + conjugated to/3  acts on the space of even forms, and 
reads 

b+~b2 = - ( d -  ~ )~/~2 "~- 0~ V ~2 (8) 

where v is the Clifford multiplication, defined for the one-forms basis as 
follows (K~ihler, 1962; Graf, 1978; Becher and Joos, 1983 ; Benn and Tucker, 
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1983; Ivanenko and Obukhov, 1985; Ivanenko et al., 1985; Bullinaria, 
1986) : 

dz ~ v dzV =_dz ~ A dzV + g  ~v 

The action (7) is invariant also under the local Lorentz rotations of the 
two-dimensional orthonormal basis: 

a a a b hu --* h~ + e bhufl (9) 

if one determines the action of the Lorentz rotations on the form q51 as 
dualization: 

~o , --~ cp , + e , ~ q3 ~ fl (10) 

where fl is the parameter of the transformation. 

3. FERMIONIC SECTOR OF THE MODEL 

In order to consider the fermionic excitations of the string, one should 
include the fermionic sector. In the standard string model (Green et al., 

1987; Polyakov, 1981) fermions are described by the two-dimensional Weyl 
spinors. In our model, following to the program of using only differential 
forms, we will describe fermion fields on the world-sheet by an inhomogene- 
ous differential form: 

1 ,u 
~F= 7/ + vt~ dz~ + ~ v ~ v d z  ^ d z  v 

The action is as follows (Kfihler, 1962; Graf, 1978; Becher and Joos, 1983; 
Benn and Tucker, 1983; Ivanenko and Obukhov, 1985; Ivanenko et al., 

1985; Bullinaria, 1986) : 

S = ~  �9 �9 A ( d -  6)q" ( l l )  

where tp components are real and anticommutating. 
One can rewrite (1 l) in the form 

f d2z xfg (lll~,~tff + ~uvo,~lll,,) (12) S--- 

This action is invariant under the global scaling: 

gvo~ ~ e2'~guv, tlt.---~ eP=tttu 
(13) 

~-> e~~ ~ v  -> e ~ v  
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where k, p, and n are real numbers, such that 

k + p = 0 ,  n + p - 2 = 0  (14) 

Let us assume cr = or(z) a n d p  = 1, k = - 1, and n = 1. Then, for the compensa- 
tion of  the O.cr-dependent terms under the variation of  (12), one should A 
again consider the operator  D: Dq~l = ( d -  ~)qJ] + o3 v ~ .  

In this case the action 

s = j ' ,  % ^ b %  (15) 

is invariant under the local conformal transformations (13) and also under 
the local Lorentz rotation (19) if we assume that 

v,,,--, ~ + e~v~p'v �9 (t6) 

On the other hand, the action (11 ) is invariant under the local conformal 
t ransformations (13) without addition of o5, if we assume k=O, p= O, and 
n = 2  in (13). 

4. L O C A L  S U P E R S Y M M E T R Y  

Thus, let us consider the set of  the boson forms 

~b2 i, i=  1 . . . . .  d 

q51 A, A = l , . . .  , N  

and also the set of  the fermion forms 

u?i, i=1  . . . . .  d 

~?A, A = I  . . . . .  N 

For  these fields the action 

So= �89 �9 (a-a)g~2': A ( d - a ) 0 2 ' +  ~ , bCa," /,bep, ~ 

"~ * LI/li A ( d -  6 )lYt/2i'~- g ~ 2  A A b ~ l  A (17) 
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is invariant under the global supersymmetric transformations 

Ao 4,~; = a~ A ~ c e ;  ' = - a ~ z 3 ~ , ~ ;  zx.q ' ,  A = o 
(18) 

Aa(~l A = otAB~IClB; AauLIi = - a J i ( d  - 5 )r A~F2 i= 0 

where (a e, a A~) is the set of anticommutating variables. 
Localizing these transformations, we find that 

A~S0 = j * da ~ v W2 s A ( d -  5 )~b2i+ �9 da As v cFls A b r  A 

In order to compensate new terms, it is necessary to introduce the set of 
anticommutating one-forms (the analogue of the Rarita-Schwinger field) 
with the transformation law 

A~Z '7= - da  ~ A ~ X  A B =  - dct AB (19) 

and add to the action the following term: 

$1 = t *  z/j v q ' j / ,  ( d -  5 ) r  * X AB v ~,'~s A 

Then we have 

+ S t )  = f * Z U v q~ j  A aik(d  - 5 )W2 ~ Aa(S0 

Ji- * z AB V ~I1B A aACDL~IC JI - * Z O" V ktl~ A d a  ~k v Wz k 

+ * X AB V ~J~l B A d a  A c  v q?l c (20) 

For compensation of the last two terms one should add to the action 

f,  , 
$2 = ~ *ZUV~SAZ~kVW2k+~ , Z A e V C ~ l e / x z A C v ~ I  c 

and for compensation of the first two terms in (20) one should assume 

A~P~ ~= - aJi(d - 5 )r j -  ak~ zkJ V W j  

A~ee2 ~ = -  a~AOr B -  a ~ z  c~ v c~ ~ 

Thus, we come to the complete local supersymmetric action: 

Sto t -~- S O At- S 1 -{- S 2 (21) 

which is the analogue of the complete standard string action (Brink et  al., 

1976; Deser and Zumino, 1976). However, contrary to the standard model, 
the supersymmetry (18), (19) does not touch the gravitational variables 
(metric). 
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5. QUANTIZATION AND CONNECTION WITH TOPOLOGICAL 
QUANTUM F I E L D  T H E O R Y  

The quantization of our model is defined by the functional integral 

j [Dh~][Dz] [D~P ][D~] [De, ] [Dr Z 

x exp(-Stot) 

Let us start with the calculation of the integral 

j" [Dqr ][Dq?] [Dr [Dr exp(-Stot) Z' 

which is the partition function for the action (21) if we consider the 
gravitational (h~) and supergauge (Z) fields as external. 

Since Stot is quadratic over fields, the calculation of the functional 
integral gives the expression for Z' in terms of superdeterminants (Berezin, 
1979) : 

Z '=  (S det R.  S det R)-  1/2 (22) 

where the operator R (/~) has the following structure: 

with 

0 
R3 = ( -zJ i  v (d-6)(2)); 

(0)  
-~3 = _ZsA v / 5  ; 

R2 = (0 - ( d -  fi)(,)Z U) 

R4=( 0 (d- ~)(S) 
-X  v z  J (d_ fi)(l)fiij ki ~j 

~=(o b+z ~) 
( o ) 

R4 = _D+ 8.b -zCA v zCU 

The superdeterminant is expressed as (Berezin, 1979) 

S det R = det R1 det- l ( R 4  - R3R~ 1R2) 
Hence, 

S det R = [det Ao det A2 det-1 &]w2 (23) 

S det R = [det / )+D. det-1 Db+]x/2 (24) 

where A~ = - ( d -  fi)2(k) is the Beltrami-Laplace operator on the k-forms. 
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Thus, we have for Z' 

Z'= [T(M)la/2[~(M)I-N/2 

where 

(25) 

T(M) = [det-1 A1 det A0 det A2]- 1/2 (26) 

5V(M) = [det -1 b + b  det/)/3+] -1/2 (27) 

It is interesting to note that Z' is independent of the supergauge field Z 
and is expressed in terms of T(M), the topological invariant of the manifold 
M (the string world-sheet)--the Ray-Singer torsion (Ray and Singer, 1971 ; 
Schwarz, 1978). For the two-dimensional manifold, T(M)= 1, since in this 
case det A1 -- det A0 det A2. Similarly, we have det b+D = det bD + and con- 
sequently T(M)= 1. It should be noted that the mutual cancellation of 
the boson and fermion determinants is a typical property of the so-called 
topological quantum field theory (Witten, 1988). 

Thus, we find that Z', a functional of Z and hl ,  turns out to be a 
topological invariant, i.e., it does not change under the local variations of 
these fields. Consequently, the suggested model is an example of the topo- 
logical quantum field theory of Witten (1988). [It is interesting to note that 
in Witten (1988) the action (11) is also used for the description of the 
fermionic sector.] 

6. CANCELLATION OF CONFORMAL ANOMALIES 

Let us return to the calculation of the functional integral Z, and choose 
the conformal-Lorentz gauge, in which 

a _ o -  a h~ - e (6 u cos a + ~a u sin a) 

d , z = O  

where Z-(ZiJ,  ZAs). The latter equation means that Z = ,  dfl, where 
_= (p0, pA~). 

For the functional measure over h i we have the standard expression 
(Polyakov, 1981; Nazarowski and Obukhov, 1987) 

[Dh~] = [Da] [Do-] [D~ ~] det I/2 L (28) 

where ~ is a vector field, the generator of the diffeomorphism group, 

Lu~ v = (-V.V'3~ + [W, Vv])~ ~ 

Note that ~ [D~ ~] gives the volume of the diffeomorphism group. 
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For the integration measure over Z we obtain 

[D Z] = [Dfl] (det Ao)- (p' § e2~ 

where P1 is the number of {a ~ and P2 is number of {aAS}. 
Thus, we have 

Z = f [Da] [Dfl] [Do-] det 1/2/~ (det A0) -(e, + ~2) Z, (29) 

where Z' is independent of o-, fl, and a. 
The determinants are well known, 

In det A 0 = ~  Ida] 

In d e t / , = ~ 3  Ida] 

where Io[a] = - �89 ~ daz ~o .  ~ o-. 
The Lorentz and supergauge anomalies, as is seen from (29), are absent, 

so the integrals over [Da] and [Dfl] give the volumes of the corresponding 
groups. 

Hence, we get 

Z =  [Do.] exp ozc 

where C = 13 - (P1 -k P2) .  

For the cancellation of conformal anomalies it is necessary to have C = 
0 or P~ +P2 = 13. Up to this point {a ~ and {a AB} were arbitrary matrices. 
Let us assume now that 

.. {a, i=j  
O l  ~J = . .  

a ~= - a s', i# j ;  i= 1 . . . .  ,4  

aAB={a , A =  B 
a A B = - a  BA, A ~ B ;  A = I  . . . . .  4 

In this case the infinitesimal supersymmetry parameters take values in 
the algebra of the group 0(4) | 0(4) | O(1) and consequently P1 + P2 = 13. 
Thus, we finally have that N =  d =  4. 

In our model the zero-forms qr realize the embedding of the string 
world-sheet into d-dimensional space-time, so the model suggested here is 
consistent (the anomalies are absent) directly in four-dimensional space- 
time. 
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7. C O N C L U S I O N  

We have considered the string model, using differential forms on the 
string world-sheet. This model allows for local supersymmetry, which, like 
the supersymmetry in Witten (1988), leads to "topological quantum field 
theory." 

Scalar components of  the boson form ~b" realize the embedding of  strings 
into d-dimensional space-time, and have a direct geometric sense. It  was 
shown that the conformal anomalies are absent if d =  4. 

We will not discuss the geometric interpretation of the other compo-  
nents of  the boson form ~b i. Evidently one can consider them simply as the 
terms of the supermultiplet. 

The canonical quantization and the no-ghost theorem will be considered 
elsewhere. 
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